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The SIR Model

Suceptible Infected Recovered

_S = � � SI + B � dS
_I = + � SI � gI � dI
_R = gI � dR:

Where B is the birth rate, � is the transmission rate, d is the death rate

and the g is recovery rate. For this system the basic reproductive ratio

R0 = �
g+ d. Time, t is measured in days.
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The SIR Model : Uses

� Human Diseases. eg. Measles, In�uenza.

� Livestock Diseases. eg. FMD.

� Behavior understood analytically:

� No births — Single epidemic leading to disease extinction.

� Continuous births — Spirals to a �x ed point, i.e. decaying

epidemics.
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The SIR Model : Typical Behavior Ð No Births
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The SIR Model : Typical Behavior Ð Continuous Births
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Continuous Births are not the Norm

We consider an annual pulse of births:

� More realistic model for many wildlife diseases. eg.:

TB in badgers, Hanta virus, West Nile virus.

� Leads to recurring epidemics.

April 4, 2005 Jim MacDonald & Matt Keeling — Mathematics Institute, University of Warwick 5



Continuous Births are not the Norm

We consider an annual pulse of births:

� More realistic model for many wildlife diseases. eg.:

TB in badgers, Hanta virus, West Nile virus.

� Leads to recurring epidemics.

April 4, 2005 Jim MacDonald & Matt Keeling — Mathematics Institute, University of Warwick 5



Continuous Births are not the Norm

We consider an annual pulse of births:

� More realistic model for many wildlife diseases. eg.:

TB in badgers,

Hanta virus, West Nile virus.

� Leads to recurring epidemics.

April 4, 2005 Jim MacDonald & Matt Keeling — Mathematics Institute, University of Warwick 5



Continuous Births are not the Norm

We consider an annual pulse of births:

� More realistic model for many wildlife diseases. eg.:

TB in badgers, Hanta virus,

West Nile virus.

� Leads to recurring epidemics.

April 4, 2005 Jim MacDonald & Matt Keeling — Mathematics Institute, University of Warwick 5



Continuous Births are not the Norm

We consider an annual pulse of births:

� More realistic model for many wildlife diseases. eg.:

TB in badgers, Hanta virus, West Nile virus.

� Leads to recurring epidemics.

April 4, 2005 Jim MacDonald & Matt Keeling — Mathematics Institute, University of Warwick 5



Continuous Births are not the Norm

We consider an annual pulse of births:

� More realistic model for many wildlife diseases. eg.:

TB in badgers, Hanta virus, West Nile virus.

� Leads to recurring epidemics.

April 4, 2005 Jim MacDonald & Matt Keeling — Mathematics Institute, University of Warwick 5



Forced SIR Model

_S = � � SI � dS
_I = + � SI � gI � dI
_R = gI � dR:

When t 2 N
S ! S + x

and d = � log(1 � x) so that annual births and deaths are balanced.

This combination of strong temporal forcing and nonlinear terms makes

the analytical approach dif�cult.
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Pulsing Births
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Periodic Attractors
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Mapping out Parameter Space

We are interested in the steady state dynamics. In particular periodic

attractors.

Our system has three parameters:

� =g is approximately the basic reproductive ratio R0 and varies from 1 to

20.

x the magnitude of the birth pulse, varies from 0.01 to 0.5.

g the recovery rate, varies from 0.075 to 0.5(ie. the infected period goes

from 2 weeks to 2 days).

Infectious period (1=g) is the easiest to measure in practice. So we �x g

and vary � =gand x, over a 318� 301grid - our parameter space.
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Calculating the Period
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Results: A Map of Parameter Space
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Sensitive Dependence on Initial Conditions
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Results: Multiple Attractors Ð g = 0:075
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Results: Multiple Attractors Ð g = 0:100
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Computing Multiple Attractors

The data set for each value of g was constructed in 2 stages:

� Using a single initial condition the period was calculated at each grid

point.

� Taking data for each period separately we try to push out its extent in

parameter space.

All this was done for four different values of g.
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Stability of these Attractors

Attractors exist, but how robust are they with respect to different classes

of perturbation.

� Small perturbations in state space — Eigenvalue methods.

� Changes in the birth pulse function.

� Changes in model structure
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Largest Eigenvalues Determine Stability

The annual map

� � (S0; I 0) =
Z �

0

 
_S(t)
_I (t)

!

dt

Consider the eigenvalues of the

Jacobian of � .
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Varying the Width of the Birth Pulse

B(t) =

8
>>><

>>>:

x
n

for t > 365� n

mod 365

0 otherwise:

Where n is the pulse width in

days.
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Varying the Width of the Birth Pulse

Instantaneous 1 day 7 days 30 days

60 days 90 days 120 days 150 days
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Changes in Model Structure: SEIR Model

_S = � � SI � dS + B 0(t)
_E = � SI � � E � dE
_I = + � E � g1I � dI
_R = g1I � dR:

Where � ; g1 = 2g.
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Changes in Model Structure : Simple SIR Model

_S = � � SI
_I = + � SI � gI
_R = gI :
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Changes in Model Structure : Childhood Diseases

_S = � � SI
_I = + � SI � gI
_R = gI :

When t 2 N

S ! S + x � Sx

I ! I � I x
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Other Properties of Attractors

� The minimum value of I attained around the attractor.

� How likely the disease is to die out in real life due to stochastic

variations.

� The dominant period of the attractor.

� How frequently do major epidemics occur?
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Minimum I
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Dominant Period
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Conclusions

� Very complex behavior from a simple system:

� Multi-season periods.

� Co-existing attractors.

� Chaos.

� Stability with respect to several classes of perturbation.

� All of these have implications for wildlife diseases.

� The nature of attractors and parameter space make it very

computationally intensive.
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